www.jmolecularsci.com

ISSN:1000-9035

Plant-Derived Phytochemicals as Hepatoprotective Agents: Experimental Evidence from Rat Models

Naina^{1*}, Phool Chandra²

¹Research Scholar, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001, Uttar Pradesh, India

²Professor, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001, Uttar Pradesh, India

Article Information

Received: 22-08-2025 Revised: 17-09-2025 Accepted: 23-10-2025 Published: 25-11-2025

Keywords

Phytochemicals, Hepatoprotection, Rat models, Oxidative stress, Inflammation, CCl₄-induced hepatotoxicity, Antioxidant mechanisms

ABSTRACT

Toxin, xenobiotic and metabolic-induced liver diseases are the most common causes of morbidity worldwide. The protective activities of phytochemicals from medicinal plants against hepatic toxins have been reported in experimental rat models. Several natural bioactives, including flavonoids, phenolic acids, alkaloids, terpenoids and saponins, exert hepatoprotection through their antioxidant, anti-inflammatory and antiapoptotic properties. Research on CCl4, paracetamol, and thioacetamideinduced models of liver damage underlines that these phytochemicals mediate oxidative stress, maintain cellular membrane integrity and regulate the signalling networks as Nrf2, NF-kB, MAPK and caspase pathways. Furthermore, these agents have been developed into nanosystems, and combinations of new with traditional medicinal plants have helped enhance in vivo pharmacokinetic (PK) profiles and therapeutic efficacy. This review also compiles the experimental data on the hepatoprotective effect of plant-based phytochemicals in rat models, summarising their mechanisms of action, safety considerations and translational importance for hepatic disease management.

©2025 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.(https://creativecommons.org/licenses/by-nc/4.0/)

INTRODUCTION:

Introduction

Liver disease is a significant global health problem, since it makes many people ill and kills them. The recent epidemiologic evidence indicates that liver diseases, including hepatitis, fatty liver disease, cirrhosis, at hepatocellular carcinoma, are responsible for millions of deaths every year [1]. It's quite easy to damage the liver, whether it's through viral infections, consuming excess alcohol, xenobiotics, or metabolic issues, because of how crucial the liver is for metabolism, detoxification, and homeostasis. Emerging risks from lifestyle and

synthetic drugs have led to an increasing incidence of non-alcoholic fatty liver disease (NAFLD) and drug-induced liver injury (DILI) [2]. Despite the reinforced clinical diagnosis and therapy, the prevalence of chronic liver damage increases, especially among the low- and middle-income parts of the world. This demonstrates the necessity of developing more effective and less toxic ways to shield the liver [3]. However, the classical hepatoprotective agents such as corticosteroids, interferons, and other antioxidants are usually less effective with significant systemic reactions. Prolonged treatment might cause drug resistance, toxicity, and side reactions in vivo [4]. Furthermore, the majority of the synthetic drugs relieve symptoms and fail to intervene in liver damage through oxidative stress, mitochondrial malfunction in mitochondria, and inflammatory cascades. Current pharmacological approaches are limited by their expensive load of long-lasting therapy and the lack of any universally effective hepatoprotective drug. So, it is now time to investigate natural compounds that can protect the liver by affecting multiple pathways and with better safety profiles [5].

Plants have long been known to possess medicinal

properties and are the 'backbone' of medicine, both traditional and modern. Phytochemicals such as flavonoids, alkaloids, terpenoids, phenolic acids, and saponins exert liver protection activities predominantly through their anti-oxidative, antiinflammatory, and membrane-stabilizing actions [6]. These bioactives may alter how cells communicate (signal transduction), scavenge reactive oxygen species (ROS), and strengthen the body's defenses, including enhanced function of glutathione and catalase. The experimental studies with rats have provided compelling evidence in support of the hepatoprotective effects of plant extracts and phytomolecules against organo toxins like CCl4, paracetamol and thioacetamide [7]. In a therapeutic context, the inclusion of these plant-based chemicals provides an alternate, environmentally friendly and sustainable strategy for managing liver diseases that can lead to novel drug discovery strategies and clinical utility[8].

Experimental Rat Models of Hepatotoxicity: Carbon Tetrachloride (CCl₄)-Induced Hepatotoxicity:

The CCl4 model is ideal for determining the mechanism by which the liver gets damaged and assessing the effects of drugs that may have hepatoprotective properties. Hepatic cytochrome P450 enzymes, particularly CYP2E1, metabolize CCl₄ to form trichloromethyl (•CCl₃) trichloromethyl peroxy (•OOCCl3) radicals [9]. intermediates These reactive induce peroxidation, membrane injury leading to lot of hepatocellular necrosis. Toxicologically, CCl4 exposure causes biochemical and histopathological changes in livers of rodents characterized by centrilobular degeneration, inflammation, and increased serum levels of liver enzymes including ALT, AST and ALP. This method may be a useful tool for the investigation of phytochemicals that suppress inflammation and free radicals, as they are known to work through this mechanism via other pathways, in order to prevent liver damage by toxins in people [10].

Paracetamol (Acetaminophen)-Induced Hepatic Injury:

Overdose of paracetamol is an established cause of sudden liver failure in man and animals. In rats, hepatotoxicity arises from the metabolic conversion of paracetamol into the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) via the CYP2E1 and CYP3A4 enzymes. Excessive NAPQI depletes the liver's glutathione reserves and forms covalent bonds with cellular proteins. This leads to oxidative stress, problems with mitochondria, and death of liver cells. The paracetamol model closely simulates human liver failure, serving as a sound basis for testing the efficacy of hepatoprotective

strategies that increase antioxidant status, improve glutathione levels, and modulate apoptotic pathways [11–13].

Thioacetamide and alcohol-induced liver damage Thioacetamide (TAA) is a strong hepatotoxin commonly employed to establish rat models of chronic liver fibrosis and cirrhosis. Reactive metabolites generated during biotransformation bind to large cellular molecules. This initiates lipid oxidative stress, peroxidation, inflammation [14]. Long-term administration of TAA promotes histological changes that resemble those observed in human liver fibrosis, including collagen deposition and alterations in the morphology of the liver. Chronic alcohol feeding studies recapitulate the pathophysiological changes observed in ALD, steatosis, inflammation, and fibrosis. These models are of considerable interest for the testing of plant-based agents that prevent oxidative damage, inflammation, and fibrosis [15].

High-fat diet and drug-induced non-alcoholic fatty liver models:

HFD-induced models have been used extensively in an attempt to replicate metabolic and histological phenotypes observed in NAFLD. Prolonged high-fat diet (HFD) has been demonstrated to induce hepatic steatosis, insulin resistance, as well as oxidative stress, reflecting the human setting of metabolic-associated fatty liver disease[16]. Long-term usage of medications such as valproic acid or methotrexate may also induce steatohepatitis by harming mitochondria and generating lipid peroxidation. These models help study how phytochemicals that modify how lipids are broken down, make insulin perform better, and reduce liver inflammation may stop and treat diseases [17].

Relevance and translational value of rat hepatotoxicity models

Rat models of hepatotoxicity provide a crucial connection between basic research and real-world use. Their physiological, metabolic, and genetic similarities to humans make them suitable for evaluating the pharmacodynamics and safety of potential hepatoprotective drugs [18,19]. Additionally, these models enable the regulated reproduction of specific damage mechanisms oxidative stress, inflammation, or fibrosis, thereby allowing mechanistic studies of phytochemical activity. Even though various animals break down food in different ways, research on rats has shown that they may be used to anticipate how humans would react to medicines that preserve the liver. Consequently, experimental rat models are crucial tools in the preclinical evaluation of plant-derived therapies for hepatic diseases [20,21].

Classes of Plant-Derived Phytochemicals with

Hepatoprotective Potential

The hepatoprotective effectiveness of plant-derived phytochemicals is attributed to their considerable structural diversity and diverse biological actions. Diverse kinds of chemicals, such as flavonoids, phenolic acids, alkaloids, terpenoids, saponins, lignans, and tannins, protect the liver against injury in diverse ways, as shown in **Table 1**. Quercetin and silymarin are two flavonoids that are very good at getting rid of free radicals and changing critical signaling pathways that govern oxidative stress and inflammation [22,23]. Gallic and ferulic acids are examples of phenolic acids that are very good at decreasing things. This keeps cell membranes stable and prevents hepatocyte necrosis.

Alkaloids like berberine and piperine increase the activity of antioxidant enzymes in the body while

controlling lipid metabolism and blocking pathways that lead to fibrosis [24]. Terpenoids and saponins, such as ursolic acid, ginsenosides, and glycyrrhizin, have antioxidant, anti-apoptotic, and anti-fibrotic effects that work together to help the liver heal over time. Lignans and tannins, particularly curcumin, ellagic acid, and catechins, safeguard cells by maintaining redox equilibrium and regulating transcription factors such as Nrf2 and NF-kB [25]. All of these types of phytochemicals influence a number of pathways that may harm the liver, including oxidative damage, mitochondrial malfunction, inflammation, and fibrosis. They are attractive candidates for making novel hepatoprotective medicines and nutraceuticals since they have a broad spectrum of actions, are not very toxic, and are found naturally in large amounts [26].

Table 1 Classification of major plant-derived phytochemicals with experimental evidence of hepatoprotective potential in rat models.

These bioactive compounds protect hepatic tissue through antioxidant, anti-inflammatory, and anti-fibrotic mechanisms

Class of	Representative	Natural Sources	Experimental Evidence/Mechanisms of	Ref.
Phytochemicals	Compounds		Hepatoprotection	
Flavonoids	Quercetin, Silymarin, Kaempferol, Rutin	Onions, apples, milk thistle, citrus fruits	Exhibit potent antioxidant and anti- inflammatory effects; inhibit lipid peroxidation; modulate NF-κB and MAPK signaling; stabilize hepatocyte membranes and enhance enzymatic antioxidants (SOD, CAT, GSH).	[27,28]
Phenolic Acids	Gallic acid, Ferulic acid, Chlorogenic acid	Tea, grapes, coffee, cereals	Protect hepatocytes against oxidative damage; regulate lipid and glucose metabolism; inhibit pro-inflammatory cytokines (TNF-α, IL-6); restore mitochondrial and enzymatic function.	[29,30]
Alkaloids	Berberine, Piperine, Solanine	Berberis spp., Piper nigrum, Solanum spp.	Improve lipid metabolism and antioxidant defenses; suppress TGF-β-mediated fibrosis; enhance bioavailability of other phytochemicals; reduce inflammatory and apoptotic markers.	[31,32]
Terpenoids & Saponins	Ursolic acid, Ginsenosides, Glycyrrhizin	Apples, Panax ginseng, Glycyrrhiza glabra	Exhibit hepatoprotective, anti-fibrotic, and anti- apoptotic actions; modulate oxidative stress and lipid metabolism; stabilize hepatic membranes and suppress inflammatory mediators.	[33]
Lignans & Tannins	Curcumin, Ellagic acid, Catechins	Curcuma longa, pomegranate, green tea	Enhance antioxidant capacity and glutathione levels; inhibit NF-κB and Nrf2 pathways; prevent lipid peroxidation and apoptosis; attenuate hepatocellular necrosis and inflammation.	[34–36]

Mechanistic Insights into Hepatoprotective Activity

Antioxidant and Free Radical Scavenging Effects

Oxidative stress is a major cause of liver damage and its development. A number of phytochemicals that originate from plants protect the liver by being powerful antioxidants and getting rid of reactive oxygen species (ROS). Some substances that halt lipid peroxidation and free radicals include quercetin, silymarin, and gallic acid. This prevents damage to large molecules in cells, including proteins, lipids, and DNA. These phytochemicals also help natural antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) accomplish their jobs better [37]. Phytochemicals stop oxidative stress from killing liver cells and causing apoptosis in liver tissues that have been exposed to toxins by maintaining redox equilibrium and protecting

mitochondrial function [38].

Anti-Inflammatory and Cytokine Suppression Mechanisms

Most liver illnesses generate inflammation, which happens when Kupffer cells are activated and proinflammatory cytokines released. are Phytochemicals such as curcumin, berberine and chlorogenic acid possess potent anti-inflammatory activity by preventing the generation of key mediators like TNF-α, IL-1β and IL-6 [39]. These substances are COX-2, and iNOS inhibitors, which leads to a reduction in NO and prostaglandins production. Preventing inflammatory cells from entering tissues and producing cytokines promotes healing of damage, accelerating the liver's recovery. phytochemicals' anti-inflammatory antioxidant benefits combine to stop liver damage from worsening [40].

Modulation of Apoptotic and Necrotic Pathways:

Hepatocellular apoptosis and necrosis are the key factors in toxin-mediated liver injury. Phytochemicals also modulate levels of the signaling molecules which enhance and suppress apoptosis. Supplementation with kaempferol, glycyrrhizin, and ginsenosides has been shown to elevate the expression of the anti-apoptotic protein Bcl-2, while suppressing pro-apoptotic proteins such as Bax, caspase-3 and caspase-9[41]. This equilibrium between life and death signals helps the liver keep its structure, preventing hepatocytes from being lost. Phytochemicals can as well inhibit the release of mitochondrial cytochrome c and keep the membrane potential in a steady state. This precludes the induction of caspase-dependent apoptosis. The types of modulatory actions are very important to protect liver cells against injury in acute and chronic liver damage [42].

Stabilization of Hepatocellular Membranes and Mitochondrial Integrity

To maintain liver function when it is under oxidative or toxic stress, the integrity of hepatic membrane is fundamental. Plant compounds like silymarin, rutin, and ursolic acid support the stability of the cell membranes by preventing the lipid peroxidation as well as the release of intracellular enzymes (alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in to the blood. They also maintain the electron transport chain and ATP

production, which continues, keeping the mitochondria safe and preventing energy loss. Restoring mitochondrial activity not only keeps cells' metabolism functioning, but it also avoids oxidative damage and cell death from spreading. A large part of how plant-based chemicals protect the liver is by doing things that preserve membranes [43].

Regulation of Key Molecular Signaling Pathways (Nrf2/ARE, NF-κB, MAPK, Caspases)

Phytochemicals safeguard the liver by altering many molecular signaling pathways that regulate oxidative stress, inflammation, and cellular viability. When the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is switched on, it increases the transcription of antioxidant response element (ARE)-dependent genes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NOO1). This makes the antioxidant defense system stronger. Blocking the nuclear factor kappa-lightchain-enhancer of activated B cells (NF-κB) pathway also reduces the levels of inflammatory genes [44]. Controlling mitogen-activated protein kinases (MAPKs) and caspase cascades also stops apoptosis and inflammation. The simultaneous control of Nrf2/ARE, NF-κB, MAPK, and caspase signaling establishes a coordinated defensive mechanism elucidating the protective effects of phytochemicals on the liver [45].

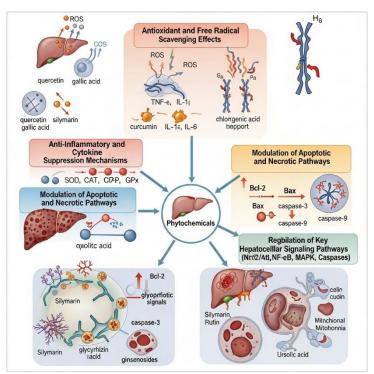


Figure 1 Mechanistic representation of phytochemical-mediated hepatoprotective pathways

The Figure 1 illustrates the several cellular and molecular mechanisms by which phytochemicals

from plants safeguard the liver. Quercetin, silymarin, gallic acid, curcumin, chlorogenic acid,

glycyrrhizin, ginsenosides, rutin, and ursolic acid all work together to keep liver cells healthy. These phytochemicals lower oxidative stress by getting rid of reactive oxygen species (ROS) and making the body's natural antioxidant defenses (SOD, CAT, GPx) stronger. They halt pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, by blocking the COX-2 and iNOS pathways. They also modify the signals that lead to cell death by raising Bcl-2 levels and lowering Bax, caspase-3, and caspase-9 levels. Keeping the membranes of liver cells stable and the mitochondria intact also helps liver cells remain alive [46]. Phytochemicals defend the liver by activating Nrf2/ARE and stopping the NF-κB, MAPK, and caspase cascades. This creates a coordinated defensive network.

Experimental Evidence from Rat Studies Phytochemicals in CCl₄-Induced Liver Injury

In CCl₄-induced hepatotoxicity models, compounds including silymarin, quercetin, and gallic acid dramatically decrease lipid peroxidation and serum transaminase levels. These phytochemicals make antioxidant enzymes work better and restore normal liver histoarchitecture, which suggests that they are highly effective at guarding against oxidative and necrotic damage [47–49].

Phytochemicals in Paracetamol-Induced Hepatotoxicity

Flavonoids like kaempferol and rutin, as well as alkaloids like berberine, protect the liver from damage induced by paracetamol by replenishing glutathione, decreasing oxidative stress, and increasing mitochondrial function. The rats that were treated had improved liver enzyme levels and fewer cells that died [50].

Phytochemicals in Alcohol- and Thioacetamide-Induced Hepatic Fibrosis

Curcumin, glycyrrhizin, and ursolic acid are phytochemicals that stop collagen from building up and fibrotic progression in rats that have been given alcohol and thioacetamide. They block the TGF- β and NF- κ B signaling pathways, which help fight inflammation and fibrosis [51].

Comparative Evaluation and Histopathological Findings

Comparative studies show that most chemicals from plants restore the structure of liver cells, reduce necrosis, and bring biochemical indicators (ALT, AST, ALP) back to normal [52]. Histological sections of the treated groups typically exhibit reduced inflammation, preserved liver architecture, and the lack of fatty degeneration, consequently confirming their notable hepatoprotective effects [53].

Pharmacokinetic Limitations and Nanoformulation Strategies

Poor Solubility and Bioavailability of Natural Phytochemicals

A lot of phytochemicals are good for the liver, but they don't dissolve well in water, the intestines don't absorb them effectively, and they break down fast in the body. Curcumin, quercetin, and silymarin are examples of chemicals that are not particularly accessible when taken by mouth because they don't pass through the stomach readily and go through a lot of first-pass metabolism[54]. pharmacokinetic limitations diminish their therapeutic activity and limit the possibility of a practical clinical use, and the implementation of improved delivery strategies to enhance their stability and in vivo availability is clearly required

Nanoparticle and Liposomal Formulations for Enhanced Delivery

Embedded (Nanotechnology based) drug delivery strategies are considered to be better solutions to the problems associated with phytochemicals in nature. Examples of formulations that facilitate molecules dissolution or reduce mortality of active compounds, favoring liver targeting are the polymeric nanoparticle, the solid lipid nanoparticles, and liposomes and nanoemulsions [56]. In experimental models of rats, liposomal silymarin or curcumin nanoparticles showed higher bioavailability, prolonged circulation time and hepatocellular protective effects. These advances also make it easier to control how drugs are released into the body, and allow for more drug to get inside cells and work at lower doses [57].

Combination and Synergistic Therapeutic Approaches

Combining different phytochemicals or combining them with synthetic medications may protect the liver in a manner that works jointly. For instance, taking piperine and curcumin together makes them more accessible since they don't break down in the liver [58]. Flavonoids and phenolic acids also work together to fight inflammation and protect against free radicals. These kinds of combination techniques, coupled with co-delivery using nanocarriers, are a potential approach to make phytopharmaceuticals work better and be less harmful. This might lead to the next generation of phytopharmaceutical formulations [59].

Safety and Toxicological Considerations Dose-response relationships and sub-chronic toxicity evaluation

People normally think that phytochemicals from

plants are harmless, but how much of them there is, how long someone is exposed to them, and how they are ingested all effect how harmful they are. Dose response studies in rat models suggest that many phytochemicals may exhibit biphasic behavior, therapeutic at low doses and possibly harmful at higher concentrations. Sub-chronic toxicity evaluations, including repeated-dose and 28-day studies, are essential for determining the no-observed-adverse-effect level (NOAEL) and guaranteeing long-term liver safety. To reduce the danger of cumulative or idiosyncratic toxicity, consistent dosage regimens and pharmacokinetic profiles are essential [60].

Biochemical and Histological Markers of Hepatic Safety

Both biochemical and histological studies are done to make sure the liver is safe. To evaluate how effectively the liver cells are operating, doctors often analyze serum indicators, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin[61]. In sub-chronic experiments, normal levels of these enzymes, combined with maintained histoarchitecture and the lack of necrosis or fatty degeneration, confirm the non-toxic properties of phytochemical formulations. On the other hand, alterations in these indicators might signal that the liver is under stress or the metabolism is overloaded, which would entail altering the dosage or making the formulation better [62].

Future perspectives in toxicity prediction and standardization

New tools to anticipate toxicity, such as computer modeling, in silico docking, and organ-on-chip technologies, are promising ways to find out whether something is hazardous to the liver before trying it on living things [63]. Using omics-based biomarkers (genomic, proteomic, and metabolomic) together makes it even easier to predict toxicity. In order to give a guarantee that herbal extracts are reusable and have regulatory acceptance, the standardization, identification of active compounds, and implementation of safety regulations at a worldwide level are very important. Combining better systemic toxicity screening protocols and accurate phytochemical characterisation will hopefully lead to more efficacious and safer hepatoprotective drugs in the future [64].

Translational Relevance and Clinical Prospects Bridging Experimental Outcomes to Human Liver Disorders

Data from rat models of liver injury further elucidate the molecular basis of the hepatoprotective effects of phytochemicals, but careful consideration should be given to interspecies metabolic and pharmacokinetic diversity when extrapolating these findings to human liver diseases. Numerous phytochemicals, including silymarin, curcumin and glycyrrhizin have also been reported to exert favourable effects in clinical or preclinical studies by ameliorating liver enzyme profile, oxidative stress and inflammatory pathways. Nonetheless, the clinical validation needs a standardized preparation, well-monitored studies and longer evaluations for safety to ascertain its efficacy in other groups of patients with hepatic diseases (e.g., NAFLD, hepatitis) including cirrhotic subjects [65].

Potential for Phytochemical-Based Hepatoprotective Drug Discovery

Phytochemicals offer a large and largely untapped resource of potential novel hepatoprotective drugs. They work on a whole bunch of different things: antioxidant, anti-inflammatory and anti-fibrotic, which works quite well with the way that liver diseases work [66]. in addition, we can know about the molecular targets and as well as significant bioactive compounds more easily on account of modern technologies for discovering novel drugs (such as sar analysis, freunds adjuvant, network pharmacology). The combination of nanocarrier systems and chemical changes can also prevent these herbal substances from solubility, stability, low bioavailability turning as therapeutically useful hepatoprotective medicines [67].

Integration into Personalized and Preventive Hepatology

Customized and preventive precision medicine strategies, incorporating variability in the genotype-metabolic phenotype, as well environmental exposures may be the roadmap of hepatoprotection. Phytochemicals exert high efficacy and low toxicity, they can be used as adjuvants or nutraceuticals in personalized hepatology to prevent the occurrence and recurrence of diseases [68]. The development of pharmacogenomics and metabolomics will allow personalized phytochemical treatment based on the unique hepatic metabolic profile of each individual. The inclusion of proof-of-principle phytotherapies into prophylactic hepatology would thereby dramatically lower the burden of liver diseases and the long-term outcome, globally [69].

CONCLUSION

Liver diseases remain a major global health problem, which is caused by many causes, including pollutants, drugs and alcohol. Approved hepatoprotective drugs often show poor compliance with the treatment and may cause side effects; hence, a safe, effective therapy is required urgently to

protect the liver from damage. Both experimental and preclinical data strongly support the therapeutic role of plant-based phytochemicals, viz flavonoids, phenolic acids, alkaloids terpenoids and lignans associated with mechanisms like antioxidant, antiinflammatory, anti-apoptotic as well as antifibrotic pathways. Rat models of hepatotoxicity (CCl4, paracetamol, thioacetamide) studies from others consistently indicate that phytochemicals sustain hepatic enzyme equilibrium and histoarchitecture and reduce oxidative/inflammatory damage. The clinical application of these drugs is restricted due to their low water solubility, bioavailability and rapid metabolism. Novel nanotechnology approaches, such as liposo-mal and nanoparticle delivery demonstrated vehicles, have improved pharmacokinetic profile and hepatic targeting potential of these natural molecules. Pre-clinical data are encouraging and sufficient; however, complete toxicologic investigations, formulations, and controlled trials in man are necessary to prove safety and repeatability. Inclusion of the phytochemicals in mainstream hepatology, with backup from pharmacogenomic data, computer modeling and personalized strategies is a thought forward move for liver disease prevention and treatment. In conclusion, the plantderived phytochemicals are an important class of bioactive molecules with strong hepatoprotective potential. Further interdisciplinary research into pharmacology, nanoscience and clinical medicine is necessary to convert these natural products from potential efficacious experimental to hepatoprotective drugs with evidence based.

REFERENCES:

- Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70:151–71. https://doi.org/10.1016/j.jhep.2018.09.014.
- Ding WX, Yang L. Alcohol and drug-induced liver injury: Metabolism, mechanisms, pathogenesis and potential therapies. Liver Res 2019;3:129. https://doi.org/10.1016/J.LIVRES.2019.11.006.
- 3. Wazir H, Abid M, Essani B, Saeed H, Khan MA, Nasrullah F, et al. Diagnosis and Treatment of Liver Disease: Current Trends and Future Directions. Cureus 2023;15:e49920. https://doi.org/10.7759/CUREUS.49920.
- Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. Revista Brasileira de Farmacognosia 2024;35:23–40. https://doi.org/10.1007/S43450-024-00589-6/METRICS.
- Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, et al. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduction and Targeted Therapy 2025 10:1 2025;10:1–36. https://doi.org/10.1038/s41392-024-02072-z.
- Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, et al. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025;13:454. https://doi.org/10.3390/BIOMEDICINES13020454.
- Jankoski PE, Wallace ZM, DiMartino LR, Shrestha J, Davis AM, Owolabi I, et al. Combating Reactive Oxygen Species (ROS) with Antioxidant Supramolecular Polymers. ACS

- Appl Mater Interfaces 2025;17:35275–87. https://doi.org/10.1021/ACSAMI.5C06967/SUPPL_FILE/A M5C06967 SI 002.MP4.
- Karnwal A, Jassim AY, Mohammed AA, Sharma V, Al-Tawaha ARMS, Sivanesan I. Nanotechnology for Healthcare: Plant-Derived Nanoparticles in Disease Treatment and Regenerative Medicine. Pharmaceuticals 2024;17:1711. https://doi.org/10.3390/PH17121711.
- 9. Iranshahy M, Rezaee R, Karimi G. Hepatoprotective activity of metformin: A new mission for an old drug? Eur J Pharmacol 2019;850:1–7. https://doi.org/10.1016/j.ejphar.2019.02.004.
- Basu S. Carbon Tetrachloride-Induced Hepatotoxicity: A Classic Model of Lipid Peroxidation and Oxidative Stress. Studies on Experimental Models 2011:467–80. https://doi.org/10.1007/978-1-60761-956-7_21.
- Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A. Novel Therapeutic Approaches Against Acetaminopheninduced Liver Injury and Acute Liver Failure. Toxicological Sciences 2020;174:159–67. https://doi.org/10.1093/TOXSCI/KFAA002.
- 12. Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminopheninduced liver injury and its implications for therapeutic interventions. Redox Biol 2018;17:274. https://doi.org/10.1016/J.REDOX.2018.04.019.
- Du K, Ramachandran A, Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol 2016;10:148–56. https://doi.org/10.1016/J.REDOX.2016.10.001.
- Ezhilarasan D. Molecular mechanisms in thioacetamideinduced acute and chronic liver injury models. Environ Toxicol Pharmacol 2023;99. https://doi.org/10.1016/j.etap.2023.104093.
- Cao P, Chao X, Ni H-M, Ding W-X. An Update on Animal Models of Alcohol-Associated Liver Disease. Am J Pathol 2025. https://doi.org/10.1016/J.AJPATH.2024.11.011.
- Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021;240. https://doi.org/10.1016/j.physbeh.2021.113528.
- Kusumastuti K, Jaeri S. The effect of long-term valproic acid treatment in the level of total cholesterol among adult. Indian J Pharmacol 2020;52:134. https://doi.org/10.4103/IJP.IJP 655 18.
- Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025;511:154020. https://doi.org/10.1016/J.TOX.2024.154020.
- Author C, R ND. Different Experimental Models for Hepatotoxicity; A Review. International Journal of Pharmaceutical Sciences 2025;03. https://doi.org/10.5281/ZENODO.15132767.
- 20. Bangru S, Diegmiller R, Di Talia S, Poss KD. Signal control during tissue regeneration in adult animals. Nature Reviews Molecular Cell Biology 2025 2025:1–20. https://doi.org/10.1038/s41580-025-00917-1.
- Zhang Y, Li Y, Ren T, Duan J ao, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms.
 Redox Biol 2024;77:103402.
 https://doi.org/10.1016/J.REDOX.2024.103402.
- Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, et al. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. Phytomedicine 2023;121:155100. https://doi.org/10.1016/J.PHYMED.2023.155100.
- Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023;28:4491. https://doi.org/10.3390/MOLECULES28114491.
- Santos-Buelga C, González-Paramás AM, González-Manzano S. Phenolic Acids and Derivatives: Description, Sources, Properties, and Applications. Natural Secondary

- Metabolites: From Nature, Through Science, to Industry 2023:37–72. https://doi.org/10.1007/978-3-031-18587-8 3.
- Arulnangai R, Asia Thabassoom H, Vajiha Banu H, Thirugnanasambandham K, Ganesamoorthy R. Recent developments on ursolic acid and its potential biological applications. Toxicol Rep 2025;14:101900. https://doi.org/10.1016/J.TOXREP.2025.101900.
- 26. Hossain MS, Wazed MA, Asha S, Amin MR, Shimul IM. Dietary Phytochemicals in Health and Disease: Mechanisms, Clinical Evidence, and Applications—A Comprehensive Review. Food Sci Nutr 2025;13:e70101. https://doi.org/10.1002/FSN3.70101.
- Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, et al. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. Beni Suef Univ J Basic Appl Sci 2023;12:47. https://doi.org/10.1186/S43088-023-00387-4.
- Al Hoque A, Begum S, Dutta D. Occurrence, Chemical Nature, and Medicinal Benefits of Flavonoids: Rutin, Kaempferol, Quercetin, Anthocyanidins, Catechins, and Flavones. Dietary Supplements and Nutraceuticals 2025:185–208. https://doi.org/10.1007/978-981-96-8622-3 5.
- Manivel P, Chen X. Chlorogenic, Caffeic, and Ferulic Acids and Their Derivatives in Foods. Handbook of Dietary Phytochemicals 2020:1–31. https://doi.org/10.1007/978-981-13-1745-3 22-1.
- Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports 2019;24:e00370. https://doi.org/10.1016/J.BTRE.2019.E00370.
- Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem 2021;226:113839. https://doi.org/10.1016/J.EJMECH.2021.113839.
- 32. Sharma H, Chandra P. Challenges and Future Prospects: A Benefaction of Phytoconstituents on Molecular Targets Pertaining to Alzheimer's Disease. Int J Pharm Investig 2024;14:117. https://doi.org/10.5530/IJPI.14.1.15.
- 33. Dong H, Qi X. Biosynthesis of triterpenoids in plants: Pathways, regulation, and biological functions. Curr Opin Plant Biol 2025;85:102701. https://doi.org/10.1016/J.PBI.2025.102701.
- 34. Lang Y, Gao N, Zang Z, Meng X, Lin Y, Yang S, et al. Classification and antioxidant assays of polyphenols: a review. Journal of Future Foods 2024;4:193–204. https://doi.org/10.1016/J.JFUTFO.2023.07.002.
- Rudrapal M, Khairnar SJ, Khan J, Dukhyil A Bin, Ansari MA, Alomary MN, et al. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front Pharmacol 2022;13:806470. https://doi.org/10.3389/FPHAR.2022.806470.
- Saraswat N, Sachan N, Chandra P. Anti-diabetic, diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from Selinum vaginatum roots in rats. Heliyon 2020;6. https://doi.org/10.1016/J.HELIYON.2020.E05137/ASSET/ E0049D2C-5216-4167-BC96-A24859FE4837/MAIN.ASSETS/GR11.JPG.
- Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress–Induced Liver Damage and Remodeling of the Liver Vasculature. Am J Pathol 2023;193:1400–14. https://doi.org/10.1016/J.AJPATH.2023.06.002.
- 38. Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomedicine & Pharmacotherapy 2023;162:114606. https://doi.org/10.1016/J.BIOPHA.2023.114606.
- Zhao Y, Zhao S, Liu S, Ye W, Chen W dong. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2025;146:113808. https://doi.org/10.1016/J.INTIMP.2024.113808.
- 40. Qin M, Xing T, Zhang M, Han J, Yu S, Chen J, et al. Synthesis and anti-inflammatory activity of chromone-sulfonamide

- derivatives as COXs/iNOS dual-target inhibitors. Medicinal Chemistry Research 2025 34:3 2025;34:638–47. https://doi.org/10.1007/S00044-024-03368-Z.
- 41. Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. Am J Pathol 2023;193:1400–14. https://doi.org/10.1016/J.AJPATH.2023.06.002.
- Nusse Y, Kubes P. Liver macrophages: development, dynamics, and functions. Cellular & Molecular Immunology 2025 22:10 2025;22:1178–89. https://doi.org/10.1038/s41423-025-01298-3.
- Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. Livers 2022;2:283–314. https://doi.org/10.3390/LIVERS2040023/S1.
- 44. Uttra AM, Iqbal U, Qasim S. Mechanisms of Hepatoprotection: Key Phytochemicals and Pathways. Medicinal Plants and Their Bioactives in Human Diseases 2025:59–81. https://doi.org/10.1007/978-3-032-01356-9_3.
- Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, et al. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. Phytomedicine 2023;121:155100. https://doi.org/10.1016/J.PHYMED.2023.155100.
- Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecularweight antioxidants. Archives of Toxicology 2024 98:5 2024;98:1323–67. https://doi.org/10.1007/S00204-024-03696-4.
- 47. dos Anjos Melo DF, Silva MAC, de Oliveira NRL, de Oliveira Neto JR, de Souza Lino Júnior R, Cruz AC, et al. New insight on the acute CCl4-induced hepatotoxicity model in rats. Naunyn Schmiedebergs Arch Pharmacol 2025;398:7643–8. https://doi.org/10.1007/S00210-025-03824-6.
- Algefare AI, Alfwuaires M, Famurewa AC, Elsawy H, Sedky A. Geraniol prevents CCl4-induced hepatotoxicity via suppression of hepatic oxidative stress, pro-inflammation and apoptosis in rats. Toxicol Rep 2024;12:128–34. https://doi.org/10.1016/J.TOXREP.2024.01.007.
- Varshney P, Chandra P. Preclinical Data Extrapolation to Clinical Reality: A Translational Approach. Curr Drug Discov Technol 2024;21. https://doi.org/10.2174/0115701638302778240417045451.
- Al-Khayri JM, Sahana GR, Nagella P, Joseph B V., Alessa FM, Al-Mssallem MQ. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022;27:2901. https://doi.org/10.3390/MOLECULES27092901.
- Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther 2021;15:4503. https://doi.org/10.2147/DDDT.S327378.
- Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. Egyptian Liver Journal 2023 13:1 2023;13:1–26. https://doi.org/10.1186/S43066-023-00248-W
- Liver Journal E, Pandey B, Baral R, Kaundinnyayana A, Panta S. REVIEW Open Access Promising hepatoprotective agents from the natural sources: a study of scientific evidence n.d. https://doi.org/10.1186/s43066-023-00248-w.
- Cione E, Torre C La, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2019;25:63. https://doi.org/10.3390/MOLECULES25010063.
- 55. Parthasarathy M, Evan Prince S. The potential effect of phytochemicals and herbal plant remedies for treating drug-induced hepatotoxicity: a review. Molecular Biology Reports 2021 48:5 2021;48:4767–88.

- https://doi.org/10.1007/S11033-021-06444-4.
- Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024;8:100305.
 - https://doi.org/10.1016/J.IJPX.2024.100305.
- 57. Singh K, Singhal S, Pahwa S, Sethi VA, Sharma S, Singh P, et al. Nanomedicine and drug delivery: A comprehensive review of applications and challenges. Nano-Structures & Nano-Objects 2024;40:101403. https://doi.org/10.1016/J.NANOSO.2024.101403.
- Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 2019;69:19–30. https://doi.org/10.1016/J.JNUTBIO.2019.03.009.
- Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 2019;69:19–30. https://doi.org/10.1016/J.JNUTBIO.2019.03.009.
- Yang Y, Ling W. Health Benefits and Future Research of Phytochemicals: A Literature Review. J Nutr 2025;155:87– 101. https://doi.org/10.1016/J.TJNUT.2024.11.007.
- 61. Gasmi B, Kleiner DE. Liver Histology Diagnostic and Prognostic Features. Clin Liver Dis 2019;24:61. https://doi.org/10.1016/J.CLD.2019.09.004.
- Gasmi B, Kleiner DE. Liver Histology Diagnostic and Prognostic Features. Clin Liver Dis 2019;24:61. https://doi.org/10.1016/J.CLD.2019.09.004.
- 63. Masarone S, Beckwith K V., Wilkinson MR, Tuli S, Lane A, Windsor S, et al. Advancing predictive toxicology: overcoming hurdles and shaping the future. Digital Discovery 2024;4:303–15. https://doi.org/10.1039/D4DD00257A.
- 64. Wang N, Li X, Xiao J, Liu S, Cao D. Data-driven toxicity prediction in drug discovery: Current status and future directions. Drug Discov Today 2024;29:104195. https://doi.org/10.1016/J.DRUDIS.2024.104195.
- 65. Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024;10:e25340.
 - https://doi.org/10.1016/J.HELIYON.2024.E25340.
- 66. Patel J, Roy H, Chintamaneni PK, Patel R, Bohara R. Advanced Strategies in Enhancing the Hepatoprotective Efficacy of Natural Products: Integrating Nanotechnology, Genomics, and Mechanistic Insights. ACS Biomater Sci Eng 2025;11:2528.
 - https://doi.org/10.1021/ACSBIOMATERIALS.5C00004.
- 67. Muñoz-Restrepo AM, Navas MC, Daza J, Girala M, Ridruejo E, Gerken G, et al. Prevention in Hepatology. J Pers Med 2024;14. https://doi.org/10.3390/JPM14020132.
- 68. Sadiq SC, Joy MP, Aiswarya SU, Ajmani A, Keerthana CK, Rayginia TP, et al. Unlocking nature's pharmacy: an in-depth exploration of phytochemicals as potential sources of anticancer and anti-inflammatory molecules. Open Exploration 2019 2:6 2024;2:744–84. https://doi.org/10.37349/EDS.2024.00073.
- Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery—A Confluence of Tradition and Innovation. Int J Mol Sci 2024;25:8792. https://doi.org/10.3390/IJMS25168792.